Partial Federated Primal-Dual Optimization
for Network-Based Android Malware Detection

Mohammad Mashreghi
Department of Electrical & Computer Engineering
College of Engineering, University of Tehran
Tehran, 417935840, Iran
m.mashreghi @ut.ac.ir

Abstract—The proliferation of Android devices has led to
a surge in malware attacks, posing significant threats to user
privacy and security. Traditional machine learning approaches
for malware detection often require centralized data collection,
which raises privacy concerns and may not be scalable given the
distributed nature of user data. Federated Learning (FL) offers a
decentralized solution by enabling devices to collaboratively train
a global model without sharing raw data. However, conventional
FL methods like Federated Averaging (FedAvg) face significant
limitations in communication efficiency, partial client partici-
pation, and non-convex optimization. These challenges result
in increased overhead, unstable model updates, and reduced
robustness, particularly in real-world applications like malware
classification. In this study, we utilize a federated primal-dual
optimization approach to enhance communication efficiency and
model convergence in FL by leveraging the Alternating Direction
Method of Multipliers (ADMM). Unlike traditional optimization
methods for FL, ADMM is well-suited for solving non-convex
composite optimization problems with non-smooth regularizers,
making it robust to data heterogeneity and dynamic client
participation. We evaluate our proposed method on widely
used benchmark Android malware classification datasets (e.g.
Malgenome, Drebin, and Tuandromd). Experimental results
demonstrate that our algorithm outperforms traditional FL
approaches (e.g. FedAvg and FedProx) in terms of accuracy, F1
score, AUC score, and false positive rate (FPR).

Index Terms—Android malware detection, Partial federated
learning, Primal-dual optimization framework, Distributed deep
learning, Android cybersecurity.

I. INTRODUCTION

Android has become one of the most widely used op-
erating systems, making it a prime target for web-based
malware attacks, with Android malware now accounting for
over 98% of mobile threats and increasing significantly in
recent years [1[]. Unlike traditional computers, Android devices
offer greater flexibility in app installation, introducing security
risks that threaten both users and organizations [2]. While
machine learning (ML) and deep learning (DL) have proven
effective for malware detection, traditional approaches struggle
with scalability due to the decentralized nature of user data
and privacy concerns related to sensitive information such as
location and online identifiers [3]]. Addressing these challenges
requires more efficient and privacy-preserving solutions for
Android malware detection.

Mohammad Hossein Badiei
Department of Electrical & Computer Engineering
College of Engineering, University of Tehran
Tehran, 417935840, Iran
mh.badiei @ut.ac.ir

Local
Dataset =

Fig. 1: FL follows a four-step process: @ the server initializes
(for the first round) or aggregates (for subsequent rounds) and
shares global model weights, @ these weights are distributed to
active clients, ® clients locally train the model on their private
data, and @ updated model parameters are sent back to the
server, where they are aggregated to update the global model,
repeating iteratively until convergence or optimal weights are
achieved.

Federated Learning (FL) has gained significant attention as a
decentralized approach for securing distributed environments,
particularly in malware detection across Android and IoT
networks [4], [5]. As shown in Fig. [T} by allowing multiple
devices to collaboratively train a global model without sharing
raw data, FL. enhances privacy while utilizing the computa-
tional power of edge devices. This client-server framework
enables model updates to be exchanged between participating
devices and a central coordinator, ensuring privacy-preserving
learning across heterogeneous edge devices such as smart-
phones [6], [[7]].

However, FL introduces several challenges distinct from
conventional distributed learning. Communication bottlenecks
emerge in large-scale networks or under bandwidth constraints,
limiting efficient information exchange, particularly in devices
with limited network capacity such as smartphones [8[]. Addi-
tionally, FL faces challenges in achieving model convergence,

which can negatively impact accuracy [9]. The diverse nature
of edge devices, each with different processing capacities and
connectivity conditions, can slow down global updates—a
problem often referred to as the “straggler” effect in FL
[10]. Moreover, due to fluctuating availability, only a subset
of clients may participate in each training round, making it
essential to design algorithms that are resilient to partial par-
ticipation and asynchronous updates [11]. Overcoming these
challenges is key to ensuring scalable and effective federated
cybersecurity solutions.

Several methodologies have been proposed to improve the
robustness of federated malware classification [[12]], [13]]. Some
approaches incorporate adversarial-resistant mechanisms, such
as generative adversarial networks (GANs) or worst-case ro-
bust optimization techniques, to mitigate poisoning attacks that
could compromise the integrity of the global model [[14], [15].
However, these adversarial mechanisms present significant
challenges in resource-constrained environments. Such GAN-
based approaches often aim to improve model robustness
by simulating adversarial scenarios; however, their limited
fidelity in generating diverse perturbations, unstable training,
and high computational demands hinder their effectiveness in
FL-based malware detection [16], [[17]. Worst-case robust op-
timization, while improving resilience, tends to rely on overly
conservative assumptions, which can reduce detection accu-
racy. Additionally, these gradient-based approaches impose
significant computational overhead, further straining resource-
constrained devices and increasing training complexity in FL-
based malware detection [18|].

In addition, Byzantine-resilient aggregation techniques, such
as Krum and Median filtering, have also been employed to
prevent malicious updates from degrading model performance
[19], [20]. However, these techniques face notable limitations
in FL, as Krum’s high computational complexity makes it inef-
ficient for large-scale networks, while Median-based methods
struggle with accurately filtering out adversarial updates in
high-dimensional spaces [21]. Additionally, geometric median
aggregation imposes significant computational overhead, pro-
longing training time and limiting scalability [22].

Additionally, deep neural networks, particularly convolu-
tional neural networks (CNNs), are widely used in FL-
based malware detection due to their ability to learn hier-
archical representations, but their computational complexity
poses challenges in resource-constrained federated environ-
ments, necessitating optimization techniques to mitigate over-
head while maintaining high performance [13]], [23]-[25].
In these frameworks, the models learn hierarchical features,
making them effective for identifying malware patterns. By
utilizing permission-based feature extraction and optimized
feature selection, they enhance classification accuracy [26],
[27]. However, CNNs face significant challenges in FL-based
malware detection due to their high computational complexity,
making them impractical for resource-limited devices. Their
reliance on large, diverse datasets is problematic in federated
environments, where data is distributed and often imbalanced,
affecting model performance. Additionally, their lack of in-

terpretability and the need for frequent updates to adapt to
evolving malware strains further complicate deployment in
bandwidth-constrained FL networks.

Moreover, LiM is another FL-based malware classification
framework that keeps app data local and leverages a secure
semi-supervised ensemble to enhance classification accuracy
while preserving user privacy [28]]. However, key challenges
of this method include the inability to classify malware at the
family level, as it does not account for the specific character-
istics of malicious apps installed by clients. Additionally, its
evaluation is limited to controlled experiments with a static
set of users and predefined parameters, which may not fully
capture real-world deployment complexities.

These advancements demonstrate the potential of FL-based
frameworks in securing Android ecosystems against sophis-
ticated cyber threats. However, several challenges persist in
implementing FL-based cybersecurity frameworks for Android
malware detection. Conventional optimization techniques of-
ten struggle with convergence inefficiencies in decentral-
ized learning, particularly under constrained computational
resources and limited communication budgets. The high fre-
quency of model synchronization increases latency and en-
ergy consumption, making real-time threat detection challeng-
ing in resource-limited environments. Additionally, existing
approaches face difficulties in balancing local and global
objectives during training, leading to suboptimal parameter
updates that degrade model performance. Furthermore, cur-
rent methods lack adaptability to dynamic threat landscapes,
requiring frequent retraining that is computationally expensive
and impractical for edge devices. Addressing these challenges
necessitates more efficient optimization frameworks capable
of handling communication constraints, accelerating conver-
gence, and enabling adaptive learning in federated cybersecu-
rity applications.

In this work, we extend the primal-dual optimization frame-
work to FL-based malware detection, leveraging its inherent
advantages in adaptive optimization and efficient convergence.
Our proposed method, built upon the FedADMM paradigm,
integrates dual variables to regulate local training, effectively
mitigating client drift without requiring extensive hyperparam-
eter tuning. Compared to traditional FL approaches such as Fe-
dAvg and FedProx, our method achieves superior convergence
rates with fewer communication rounds while maintaining
a lower false positive rate (FPR) and a higher area under
the curve (AUC), demonstrating its robustness in malware
classification. Furthermore, our framework exhibits enhanced
scalability, as increasing the number of participating clients
leads to more accurate global model updates, surpassing alter-
native methods in both efficiency and predictive performance.
Ultimately, these results underscore the potential of primal-
dual optimization in constructing resilient and adaptive FL-
based cybersecurity solutions.

The rest of the article is structured as follows. Section
provides the background. Section outlines the proposed
methodology. Section presents simulation results and dis-
cussions. Finally, Section [V| concludes with key takeaways.

II. BACKGROUND

Before presenting the proposed methods, we first outline
the structure of distributed Android applications to provide
the necessary foundation for understanding the framework
introduced in this article.

Android Applications. These are packaged as APK files,
containing essential components such as the AndroidMani-
fest.xml (defining runtime permissions and configurations),
classes.dex (holding compiled code and execution logic), and
resource eiles (UI definitions and multimedia content). In
FL-based malware detection, analyzing these structured com-
ponents enables efficient feature extraction while preserving
privacy, facilitating decentralized learning without exposing
raw application data.

Federated Learning. In FL, multiple clients, denoted as
i € {1,2,...,n}, collaborate to train a global model while
maintaining the privacy of their local datasets D;. The global
optimization objective is to minimize the loss function £
across all data distributions:

n
min g
a? .
=1

where T represents the global model parameters. In FedAvg,
each client 7 independently updates its local model z; based on
its data and sends the model parameters to the central server.
The server aggregates the updates by averaging:

|DDZ'| E[E(hj)},

This process ensures that the global model benefits from
diverse data while preserving privacy.

In FedProx, the goal is to mitigate the effects of data
heterogeneity by adding a proximal term to the local objective
function. The local update for client ¢ is adjusted by a
regularization term:

J)f = argmin{ﬁ(hxi) + % ||sz — jk—le})

where p controls the strength of regularization, helping the
local model stay closer to the global model parameters. After
local updates, the server aggregates the parameters as in
FedAvg. This modification helps mitigate client drift and
improves model convergence, leading to more stable and
efficient global model training.

Malware Detection with FL. FL facilitates decentralized
malware detection by enabling collaborative model training
across distributed devices while maintaining data locality and
privacy. It processes high-dimensional feature sets, including
API call sequences, dynamic execution traces, and system
logs, to detect anomalous behavior indicative of malware.
However, FL introduces challenges such as client drift due
to inconsistent local updates and substantial communication
overhead from frequent model aggregation.

ITI. METHODOLOGY: PARTIAL FEDERATED PRIMAL-DUAL
OPTIMIZATION FOR ANDROID MALWARE DETECTION

In this section, we describe how to apply the Federated
ADMM (FedADMM) algorithm to detect Android malware in
a FL setting. FedADMM is a primal-dual framework allowing
partial client participation, which makes it especially suitable
for scenarios where not all Android devices are available or
willing to participate at each training round.

A. System Overview

To begin with, we consider a network of n Android devices,
each holding local data that can be used to train a malware
detection model. This local data may include features such as
system calls, permissions, network usage patterns, or other
behavioral indicators of installed applications. Our goal is
to train a global classifier x that accurately distinguishes
malicious apps from benign ones while preserving user privacy
and minimizing communication overhead.

In FL, each device ¢ € [n] has its own local dataset D;. We
define a local loss function f;(-) that measures how well the
model z; fits the local data D;. In many malware detection
tasks, f; could be a cross-entropy loss with regularization
terms to control overfitting. In addition, we may include
a global regularization or penalty term ¢(-) that encodes
constraints or priors shared across all devices (e.g., weight
decay). The overall objective is to collaboratively minimize
the sum of local losses and the global term g, subject to the
constraint that the global model x and local models z; remain
consistent.

B. Augmented Lagrangian Formulation

FedADMM uses an augmented Lagrangian to handle the
coupling between local models x; and the global model x.
Specifically, for each client ¢, we define:

ﬁi(l’f,xk,zi) = fi(il?f)+g($k)+<% ff—xk>+g ||I§—Ik”2

where z; is the dual variable associated with the constraint
z; = x, and > 0 is a penalty parameter that controls
the strength of the coupling. By penalizing the difference
|z¥ — 2*|| and introducing the dual variable z;, Fed ADMM
iteratively encourages local models to align with the global
model while allowing partial client participation at each round.

C. Optimization Framework

We now present the FedADMM procedure step-by-step for
Android malware detection. Algorithm [I| matches the exact
structure we use in our framework. Below, we explain each
stage of the algorithm and how it applies to our malware
detection scenario:

1) Initialization: The server initializes a global model z°

(e.g., a neural network or other classifier) and sets 70 =
20, Each Android device i initializes its local model z!
to the same value z°. The dual variables z) are set to
zero. We also set parameters: a penalty multiplier -, the
maximum number of communication rounds K, and any
local convergence tolerances ¢; .

Algorithm 1 Federated ADMM Algorithm (FedADMM)

1. Initialize 2°, v > 0, K, and tolerances €; o(i € [n])
2: Initialize the server with z° = z°

3: Initialize all clients with z) = 0 and 29 = 3% = 2°
4: for k=0,1,..., K do

5. Randomly sample S; C [n] with size S

6 > Client side:

7. for each client i € S; do

8

9

Receive ZF from the server

xf“ /A arg min Li(xi,ik,zf)
T;
10: 2P = 2k 4y (wi-”l — %) // Dual update
11: £ = xf“ — %zf“
12: Send J?Z-k“ to the server

13: end for
14: > Server side:

.okl 1 k+1
15 % = 1 dies, Ti
16: ¢l = prox_ ,(ZF11)
17: end for

2) Partial Participation: At the start of round k, the server
randomly selects a subset S, C [n] of size S. Only the
selected devices will participate in this round. This step
is crucial in real-world Android environments, where
devices may have limited battery or intermittent network
connectivity.

3) Local Computation: Each selected device i € S
receives the current global model Z* from the server.
Locally, device ¢ solves (or approximates) the subprob-
lem

k+1 _ . —k _k
x; ' = argmin Li(x;, T", 27)

~ arg rrglcan [fl(xl) + g(jk)

+ (ks — 2% + L —).

In practice, f;(-) is the local malware detection loss
on device ¢ (e.g., cross-entropy over benign/malicious
labels). This step may be performed by a few epochs
of gradient descent or another suitable optimization
method, given the device’s computational constraints.

4) Dual Update: The device updates its dual variable z; to
account for the difference between its local model and
the global model:

zf“ =z 4y (forl _ Ek).
This step is a key feature of ADMM, helping to balance
local and global objectives.

5) Constructing the Update to Send: To reduce commu-
nication overhead, device ¢ may send a modified update
:Ef“ back to the server:

k1 I e
T =2 — 52& .

This representation encodes both the local model and
dual information in a single vector.

6) Server Aggregation: The server aggregates the local
models from all participating devices i € Sk:

1 k
= @ in+1.

1€Sk

§k+1

In a malware detection context, this aggregation forms
a new “averaged” model capturing knowledge from all
participating devices.

7) Proximal Update: Finally, the server applies a prox-
imal operator (depending on + and possibly g) to the
aggregated model:

gl = prox,y/n(fl“l),
which may include any additional global regularization
or constraints (e.g., g(-)). This produces the updated
global model z*F+1.

8) Next Round: The process repeats for K rounds or
until convergence criteria are met. Over time, the global
model z* improves its ability to classify malicious
vs. benign apps, leveraging data from the distributed
network of Android devices.

IV. SIMULATION RESULTS AND DISCUSSION

To assess the performance of our proposed method, we
carried out extensive simulations across a variety of con-
figurations. These experiments were specifically designed to
examine convergence behavior, communication efficiency, and
scalability in comparison to established federated learning
baselines. The results presented in this section highlight the
advantages of our approach and explore its potential implica-
tions for federated malware detection.

A. Dataset Description

Our evaluation is conducted on three benchmark datasets
for Android malware detection, described as follows:
Malgenome. This dataset contains features extracted from
3,799 Android application samples, comprising 2,539 benign
apps and 1,260 malware samples, collected from the Android
Malware Genome Project [29]. It includes 215 features in total.
Drebin. Sourced from the Drebin Project [30], this dataset
features data from 15,036 app samples, with 9,476 classified
as benign and 5,560 as Android malware, and consists of 215
features.

Tunadromd. Detailed in [31]], this dataset comprises features
from 4,465 app samples, including 903 benign apps and 3,565
Android malware samples, and contains 241 features overall.

B. Experimental Setup

This subsection outlines the experimental framework of our
study, including machine configuration, software environment,
classifier architecture, optimization strategy, and parameter
settings. Details are provided below:

Machine Configuration. The experiments were conducted
on a device running Windows 11 Pro Education (OS Build

97.63 97.63 97.99

98.28 98.22 98.93
100 +033 +0.3a 0.54

4259 +2.71 0.47

9820 98.14 98.08 96.29 9620 25:93
2521 2521 2131

4021 +0.17 0.32 94.53

cy and STD (%)
acy and STD (%)

Global Mean Accura
Global Mean Accur:

== FedAvg
FedPro)
FedADMM

== FedAvg

FedProx
FedADMM

.37
£10.56 +10.62 £10.42

97.39 97.37 97.56

96.38

94.38 95. +0.84 +0.86 +1.01 94.23
g;.g; 9;.3«1 15,27 92.30 +6.84

X715 +7. 88.86 88.74 +13.91

I Peryrieris O

+5.62 +531

acy and STD (%)

Global Mean Accur:

== FedAvg
FedProx
FedADMM

Drebin Malgenome Tuandromd Drebin

(a) 5-clients

Fig. 2: Performance comparison of FedAvg,
communication rounds.

Malgenome

(b) 10-

Tuandromd Drebin Malgenome Tuandromd

clients (c) 15-clients

FedProx, and FedADMM in terms of model accuracy across the datasets over 10

98,93 98.89 98.96
4098 1.00 +0.80

98.35
=107

98.28 98.20 98.00 97.68 97.62 97.77 9775 9808 96.99
£0.17 +0.14 +0.35 +3.49 +3.72 100 +0.27 +0.28 +0.45 +7.48

uracy and STD (%)

Global Mean Accuracy and STD (%)

Global Mean Acc

== FedAvg
FedProx FedProx
FedADMM FedADMM

96.98 97.27
+7.48_+7.42

97.24
93.19 9313 *7.46
£11.87 £11.87

97.48 97.47 97.83
+0.61

8 +0.68 +0.71 96.34

+5.27
90.92 90.64
2771 +7.73

97.30
94.18 9413 +3.78
+6.52_ +6.5

s:

uracy and STD (%)

Global Mean Acc

FedADMM

Drebin Malgenome Tuandromd Drebin

(a) 5-clients

Malgenome

(b) 10-

Tuandromd Drebin Malgenome Tuandromd

clients (c) 15-clients

Fig. 3: Performance comparison of FedAvg, FedProx, and FedADMM in terms of model accuracy across the datasets over 20

communication rounds.

22631.4890) a 64-bit operating system. The system is powered
by a 13th Gen Intel® Core™ i7-13620H processor, operating
at 2.40 GHz. It is equipped with 16.0 GB of RAM. This
configuration offers robust computational resources suitable
for deep learning tasks and federated learning experiments.
Software Development Environment. The FedADMM al-
gorithm was implemented using Python 3.10.11, paired with
PyTorch 2.6.0+cpu as the primary deep learning framework
for model development and training. The CPU-only version of
PyTorch was selected to align with the hardware constraints
of the system, ensuring efficient execution without GPU de-
pendencies. Additional libraries, such as NumPy and Pandas,
were utilized for data preprocessing and management, ensuring
a streamlined development pipeline.
Base Classifier and Optimizer. The base classifier is a 4-layer
feed-forward neural network tailored for binary classification
(benign vs. malware), selected for two key reasons: (1) to
enable fast training and efficient communication between
clients in the federated learning setup, minimizing latency
during model updates, and (2) to maintain a compact model
size suitable for deployment on resource-constrained mobile
phone devices. The architecture consists of:

e First Hidden Layer: 200 neurons, designed to capture a

broad range of features from the input data.
e Second Hidden Layer: 100 neurons, refining the learned
representations.

e Third Hidden Layer: 50 neurons, further compressing the
feature space for efficient classification.

e Output Layer: A single neuron with a sigmoid activation
function, outputting probabilities for the binary classes
(benign or malware).

The number of neurons and layers was determined through
a trial-and-error approach, as no standardized method exists
for automatically optimizing such architectures in this context.
The hidden layers employ the ReLU (Rectified Linear Unit)
activation function to introduce non-linearity and mitigate
vanishing gradient issues, while the sigmoid activation in the
output layer is chosen to suit the binary classification task.
For training, we adopted the Stochastic Gradient Descent
(SGD) optimizer, widely favored in federated learning due
to its simplicity, efficiency, and ability to handle distributed
updates effectively. The choice of SGD also aligns with its
proven performance in similar deep learning applications, and
it integrates seamlessly with PyTorch’s optimization utilities.

Parameter Setup. The FedADMM model was trained using
a partial federated learning approach, where, in each training
round, only 80% (0.8) of all available clients are randomly
selected to participate and aggregate their updates. This strat-
egy enhances scalability and simulates real-world scenarios
where not all clients are available simultaneously. The training
process was configured with the following hyperparameters:

e Batch Size: 32, balancing computational efficiency and
gradient stability.

o Local Epochs: 32 fixed for each client in training process.

e Cross-Validation: An 80-20 Hold-Out technique was em-
ployed, splitting the dataset into 80% for training and
20% for testing. This approach ensures a robust evalua-
tion of model generalization and performance across all
datasets.

e Learning Rate: Set to 0.0001 for the SGD optimizer,
providing a steady convergence rate while avoiding over-
shooting.

Source Code Availability. The complete source code, along
with detailed implementation notes and instructions for repli-
cation, is publicly accessible on GitHub at https://github.com/
ArgAl-Lab/Partial-Fed ADMM- Android- Malware-Detection,
This repository includes scripts for data preprocessing, model
training, and evaluation, enabling full transparency and
facilitating further research.

This experimental setup ensures that our FedADMM ap-

proach is both computationally feasible and rigorously evalu-
ated, providing a solid foundation for the performance results
discussed in subsequent sections.
Performance Metrics. The accuracy, Fl-score, AUC, FPR,
and specificity are metrics used to evaluate the performance
of the classification model. For binary classification, these
metrics are calculated in terms of positives and negatives

C. Discussion and Analysis

In this section, we discuss the experimental results obtained
by our proposed federated primal dual approach and compare
its performance with FedAvg and FedProx under different
configurations. Specifically, we evaluated three client scenarios
(5, 10, and 15 clients) with clients availability and two round
settings (10 and 20 rounds). The average test accuracy of
the global model is presented in Figures [2| and [3] while the
specificity, Fl-score, AUC, and FPR are reported in Tables [
and [[Il The best results are highlighted in bold.

For the Drebin dataset, the FedADMM method has demon-
strated similar or higher scores across all metrics (accuracy,
specificity, F1 score, AUC score, and FPR) compared to the
FedProx and FedAvg approaches. In the first comparison (see
Table [I] and Figure @ where the number of rounds is 10 and
the number of clients is 5, FedADMM improved specificity
by approximately 0.2% and 0.25% compared to FedAvg and
FedProx, respectively, while also reducing FPR by 0.09%
and 0.016% in that order. For the scenario with 10 clients,
the performance of FedADMM is superior to the other two
methods in both the tables and figures, showing about a 0.3%
increase in accuracy, slightly more than a 1.4% increase in
specificity, and a 0.5% improvement in F1 score, along with an
almost 1.38% reduction in FPR. In scenarios with 15 clients,
the FedADMM approach exhibits trends similar to the 10-
client case, albeit with smaller differences in the metric values.
For 20 rounds (see Figure [3 and Table [[I), it can be observed
that after 20 rounds the FPR of the FedADMM approach is
lower than that of the other two methods. In the case of 10

clients, FedADMM achieves higher specificity and F1 score
by 1.3% and 0.39%, respectively. This trend is repeated for the
15-client scenario, where FedADMM consistently produces
better scores across the evaluated metrics.

For the Tuandromd dataset, in a 10-round setting with 5
clients, FedADMM achieves approximately 0.8% higher ac-
curacy with a lower standard deviation. Moreover, it improves
other metrics by 0.41% in specificity, 0.99% in F1-score, and
0.03% in AUC. In the 10-client setting, the accuracy is 0.84%
higher than that of FedAvg, while the Fl-score and AUC
increase by about 2% and 0.21%, respectively. In the 15-client
scenario, similar behavior is observed, with accuracy reaching
9.56% higher than that of the other two methods. For the 20-
round setting, the mean test accuracy remains superior, with
increases of 0.73%, 3.17%, and 6.34% for the 5-, 10-, and 15-
client settings, respectively. In the 5-client scenario, all metrics
are outstanding, whereas in the 10-client scenario, only the F1-
score and AUC improve (by 1.73% and 0.2%, respectively),
and in the 15-client scenario, the Fl-score is 3.14% higher
than that of the other methods.

For the Malgenome dataset, the FedADMM algorithm
demonstrates robust performance across various settings. In
the 10-round setting, FedADMM achieves a 0.65% increase in
accuracy, a 3.45% improvement in specificity, and a 1.29% in-
crease in Fl-score, while the FPR decreases significantly from
4.40% to 0.93%. In the 10-client setting, accuracy is more than
0.84% higher compared to the other methods, with specificity
improving by 3.51%, F1-score increasing by 1.83%, and FPR
decreasing by 3.51%. In the 15-client scenario, although all
metrics tend to decline across methods, the relative difference
becomes more pronounced. Specifically, FedADMM shows a
2.46% higher accuracy, an 11.23% improvement in specificity,
an increase in F1-score from 0.7142 to 0.7872, and an 11.35%
reduction in FPR compared to the alternatives. For the 20-
round setting, overall accuracy increases by 0.03% and speci-
ficity by 1.29%. In the 10-client configuration, FedADMM’s
accuracy is 0.28% higher than that of the other two methods,
with specificity improving by 2.16% and F1-score by 0.48%.
In the 15-client setting, accuracy increases by approximately
4.07%, specificity by about 13.01%, the F1-score improves by
11.05%, and AUC increases by 0.18%.

Overall, it is evident that as the number of clients in-
creases, FedADMM overcomes the challenge more effec-
tively. It also demonstrates excellent performance on the
Malgenome dataset. Unlike FedAvg—which only updates pa-
rameters based on the client’s dataset before sharing them
with the server—FedADMM requires clients to update their
network parameters using a dual variable, a process that
demands more processing power and memory. Consequently,
FedADMM achieves superior results across these datasets and
exhibits its best performance in various scenarios and rounds.

https://github.com/ArgAI-Lab/Partial-FedADMM-Android-Malware-Detection
https://github.com/ArgAI-Lab/Partial-FedADMM-Android-Malware-Detection

61100 F Y1200 T 7870°0 F 61100 F £600°0 F 91100 LOYO0 F £600°0 F 06000 T SI10°0 F 90v0°0 F 06000 F
1010°0 Y2660 LSL60 66360 68000 Y7660 €L16°0 11660 1600°0 $T66°0 68760 60660 st
76000 T S700°0 F 1020°0 ¥ 76000 F 9L00°0 F 6L00°0 F €PE00 F 9L00°0 F ¥L00'0 F 9,000 F YrE00 F vLO00 F o1 | puompueny
100 7L66°0 6£86°0 8686°0 ¥€10°0 1566°0 £996°0 99860 SE10°0 75660 99960 $986°0
LS00°0 F $100°0 F 79000 F LS00°0 F S¥00°0 F 81000 F 661070 F S¥00°0 F S¥00°0 F 81000 F 881070 F SOES
$800°0 8660 66860 S166°0 0010°0 08660 65860 00660 0010°0 18660 £986°0 00660 s
PLITO F $200°0 F ISIT0 pLITO F 61VE0 F 0%00°0 F 69VE0 F 61VE0 F 61VE0 F 0v00°0 F ILYE0 F 61V€0 F
L¥90°0 06660 £V€6°0 £5€6°0 €961°0 1L66°0 LTT80 LEOS0 8¥61°0 TL66°0 8€78°0 7508°0 sl
S91T0 F LY00°0 F SPIT0 F S91T0 F 1S1T0 F 6£00°0 T 8Y1T0 F 1S1T0 1S1T0 8€00°0 F 6v1T0 F 1S1T0 F N —
7790°0 $866°0 8V€6°0 8LEG0 T780°0 £866°0 86260 8516°0 8€80°0 £866°0 00£6°0 7916°0
6220°0 F S0000 F 0T10°0 ¥ 672070 F 00€0°0 F S0000 F 96100 F 00€0°0 F S6T00 F S000°0 F €S100 F S6T0°0 F
0210°0 96660 LY86°0 0886°0 €920°0 96660 7€86°0 LEL6O 6¥20°0 96660 07860 1SL6°0 s
LETO0 F 81000 ¥ 960070 F LETO0 61100 T 81000 F T600°0 F 611070 F €I10°0 F L1000 F T600°0 F €I10°0 F
0620°0 65660 90L6°0 01,670 I¥70°0 67660 £€596°0 65S6°0 8¢0°0 05660 $596°0 79560 st
$900°0 ¥ L0000 F 65000 F $900°0 F €500°0 F 90000 F 8€00°0 F €500°0 F 75000 F 90000 F 9€00°0 F 75000 F ol B
0L20°0 9566°0 PEL60 0€L6°0 9000 95660 16960 76560 86£0°0 LS66°0 $696°0 20960 :
750070 F 90000 F 900°0 F 75000 F 81000 F €000°0 F 610070 F 810070 F TT00°0 T €000°0 F €200°0 F TT00°0 T
TLT0°0 65660 6TL60 8TL6'0 $870°0 79660 95L6°0 SIL60 9920°0 £966°0 L9L6°0 YEL6'0 s
add oNv auods-14 | Kpynadg add onv aods-14 | Kpynadg qdd onv 2100s-14 | Ayoygadg || syudI)
wwpypag X01dP3g saypaq Jo ‘oN
SpUNoI ()7 I10J SWILIOS[Y pUE S}OseIR(] SSOIOY SINSAY S[OPOIA [8qO[D :II A 19V.L
96100 T LTI0°0 €S€0°0 F 95100 91000 F 8T€0°0 F 892070 F 91000 12000 F STE00 F ¥820°0 T 1200°0 ¥
8%10°0 07660 69960 75860 S000°0 6£86°0 ¥€16°0 $666°0 L0000 14860 ¥S16°0 £6660 o1
L6000 T $€00°0 F TLT00 F L6000 F 9L00°0 F €000 F 08€0°0 F 9,000 F 9L00°0 F €¥00°0 F 89€0°0 F 9,000 o1 | puompueny
LST0°0 $966°0 68L6°0 €786°0 8110°0 77660 ¥LS6°0 78860 8110°0 SY66°0 06560 78860
$L00°0 F L1000 F $L00'0 F vL00°0 F €900°0 F 610070 F 892070 F £900°0 F #9000 F 61000 T 89200 T $900°0 T
SI10°0 6L66°0 £886°0 78860 65100 91660 ¥8L6°0 1860 1910°0 91660 ¥8L6°0 65860 s
796€°0 F 08000 F 9¢6£°0 F 796£°0 F 8€6€°0 F 20100 F YI6£0 F 8€6£°0 F 8¢6£0 F 00100 F 016£0 F 8€6£°0 F
LLOT0 $966°0 TLSL0 €T6L°0 LYTE0 9€66°0 $IIL°0 €5L9°0 TITE0 L£66°0 wILo 8890 s!
09670 F £500°0 F SP6T0 F 09620 F 6L6T0 F SS00°0 F €P6T0 F 6L6T0 F 79670 F €500°0 F 65620 F 79620 F O —
S0TI°0 9L66°0 9188°0 S6L8°0 86S1°0 €L66°0 ££98°0 078°0 96S1°0 €L66°0 7998°0 Y80
700 $000°0 ¥ $900°0 ¥ 700 F LLLOO F 60000 F Pr00 F LLLOO F ¥PLOO F 60000 F W0 F YPLOO F
£600°0 $666°0 S+86°0 L0660 95%0°0 ¥666°0 91L6°0 ¥56°0 0v0°0 76660 9TL6'0 09560 s
95100 ¥ 700070 F 0€10°0 95100 F TLIOO F ¥200°0 F SI10°0 F TLIO0 F L9100 F €200°0 F €I10°0 F L9100 F
0£€0°0 8166°0 69960 0L96°0 9500 €766°0 6£96°0 75560 L¥b0°0 €766°0 960 €560 st
0800°0 ¥ 010070 ¥ 6900°0 F 08000 F €700°0 F 90000 F ¥v00°0 F €000 F 1700°0 F 90000 F €000 F 1¥00°0 F ol eI
$S20°0 85660 8TL60 9L6°0 96£0°0 75660 92960 £096°0 T6£0°0 75660 LL960 80960 ‘
6+00°0 ¥ S000°0 F 1%00°0 F 600°0 F 02000 F €000°0 F 12000 F 02000 ¥ LTO00 F €000°0 F LT000 F LT000 T
7920°0 95660 6£L6°0 8€L6°0 8820°0 19660 LYL60 TIL60 1L20°0 79660 SSL60 6TL6'0 s
ddd o0nv 2100s-1 | AjdyRadg qdd onv 2100s-1 | AypyRadg qdd 2100s-14 | Kyoyads || spudr)
WwWpypay X01gpay Jo "oN

SpunoI ()] I0j SWYILIOS]Y pue S1aseje(] SSOIOY SINSAY S[OPOIN 901D T A T1IVL

V. CONCLUSION

In this work, we introduced a primal-dual optimization
framework for FL-based malware detection. The proposed
method incorporated dual variables to regulate local up-
dates, mitigating client drift and enabling automatic adaptation
without requiring extensive hyperparameter tuning. Empiri-
cal evaluations demonstrated superior convergence properties,
achieving higher accuracy with fewer communication rounds
compared to FedAvg and FedProx. The method consistently
outperformed baselines by reducing the false positive rate
and improving AUC, ensuring enhanced detection reliability.
Furthermore, scalability analysis showed that as the number
of participating clients increased, the algorithm maintained
superior performance gains, reinforcing its effectiveness in
large-scale FL deployments. These findings established a
principled optimization strategy for malware detection in fed-
erated settings which offers a computationally efficient and
communication-aware alternative to existing approaches.

REFERENCES

[1] A. Guerra-Manzanares, “Machine learning for android malware detec-
tion: mission accomplished? a comprehensive review of open challenges
and future perspectives,” Computers & Security, vol. 138, p. 103654,
2024.

J. Liu, J. Zeng, F. Pierazzi, L. Cavallaro, and Z. Liang, “Unraveling the
key of machine learning solutions for android malware detection,” arXiv
preprint arXiv:2402.02953, 2024.

[3] M. Nobakht, R. Javidan, and A. Pourebrahimi, “Sim-fed: Secure iot
malware detection model with federated learning,” Computers and
Electrical Engineering, vol. 116, p. 109139, 2024.

H. Kaur, V. Rani, M. Kumar, M. Sachdeva, A. Mittal, and K. Kumar,
“Federated learning: a comprehensive review of recent advances and
applications,” Multimedia Tools and Applications, vol. 83, no. 18, pp.
54 165-54 188, 2024.

D. Torre, A. Chennamaneni, J. Jo, G. Vyas, and B. Sabrsula, “Toward
enhancing privacy preservation of a federated learning cnn intrusion
detection system in iot: Method and empirical study,” ACM Transactions
on Software Engineering and Methodology, vol. 34, no. 2, pp. 1-48,
2025.

[6] M. Venkatasubramanian, A. H. Lashkari, and S. Hakak, “Iot malware
analysis using federated learning: A comprehensive survey,” IEEe Ac-
cess, vol. 11, pp. 5004-5018, 2023.

M. Abdel-Basset, H. Hawash, K. M. Sallam, I. Elgendi, K. Munasinghe,
and A. Jamalipour, “Efficient and lightweight convolutional networks for
iot malware detection: A federated learning approach,” IEEE Internet of
Things Journal, vol. 10, no. 8, pp. 7164-7173, 2022.

S. Wang, R. Morabito, S. Hosseinalipour, M. Chiang, and C. G. Brinton,
“Device sampling and resource optimization for federated learning in
cooperative edge networks,” IEEE/ACM Transactions on Networking,
2024.

[9] D. Thakur, A. Guzzo, and G. Fortino, “Hardware-algorithm co-design of
energy efficient federated learning in quantized neural network,” Internet
of Things, vol. 26, p. 101223, 2024.

N. Kumari and P. K. Jana, “Communication efficient federated learning
with data offloading in fog-based iot environment,” Future Generation
Computer Systems, vol. 158, pp. 158-166, 2024.

H. Wang and J. Xu, “Friends to help: Saving federated learning from
client dropout,” in ICASSP 2024-2024 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2024,
pp. 8896-8900.

V. Rey, P. M. S. Sdnchez, A. H. Celdran, and G. Bovet, “Federated
learning for malware detection in iot devices,” Computer Networks, vol.
204, p. 108693, 2022.

W. Fang, J. He, W. Li, X. Lan, Y. Chen, T. Li, J. Huang, and L. Zhang,
“Comprehensive android malware detection based on federated learning
architecture,” IEEE Transactions on Information Forensics and Security,
vol. 18, pp. 3977-3990, 2023.

[2

—

[4

=

[5

=

[7

—

[8

=

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. E. Khoda, T. Imam, J. Kamruzzaman, I. Gondal, and A. Rahman,
“Robust malware defense in industrial iot applications using machine
learning with selective adversarial samples,” IEEE Transactions on
Industry Applications, vol. 56, no. 4, pp. 44154424, 2019.

R. Taheri, M. Shojafar, F. Arabikhan, and A. Gegov, “Unveiling vulner-
abilities in deep learning-based malware detection: Differential privacy
driven adversarial attacks,” Computers & Security, vol. 146, p. 104035,
2024.

I. Gulrajani, C. Raffel, and L. Metz, “Towards gan benchmarks which
require generalization,” arXiv preprint arXiv:2001.03653, 2020.

W. Huang, M. Ye, Z. Shi, G. Wan, H. Li, B. Du, and Q. Yang,
“Federated learning for generalization, robustness, fairness: A survey
and benchmark,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and
S. Y. Philip, “Privacy and robustness in federated learning: Attacks and
defenses,” IEEE transactions on neural networks and learning systems,
2022.

R. Taheri, M. Shojafar, M. Alazab, and R. Tafazolli, “Fed-iiot: A
robust federated malware detection architecture in industrial iot,” IEEE
transactions on industrial informatics, vol. 17, no. 12, pp. 8442-8452,
2020.

A. Khraisat, A. Alazab, S. Singh, T. Jan, and A. Jr. Gomez, “Survey
on federated learning for intrusion detection system: Concept, architec-
tures, aggregation strategies, challenges, and future directions,” ACM
Computing Surveys, vol. 57, no. 1, pp. 1-38, 2024.

L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “Rsa: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 1544-1551.

A. Acharya, A. Hashemi, P. Jain, S. Sanghavi, 1. S. Dhillon, and
U. Topcu, “Robust training in high dimensions via block coordinate
geometric median descent,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2022, pp. 11 145-11 168.

C. Jiang, K. Yin, C. Xia, and W. Huang, “Fedhgcdroid: An adaptive
multi-dimensional federated learning for privacy-preserving android
malware classification,” Entropy, vol. 24, no. 7, p. 919, 2022.

D. Hamouda, M. A. Ferrag, N. Benhamida, Z. E. Kouahla, and
H. Seridi, “Android malware detection based on network analysis and
federated learning,” in Cyber Malware: Offensive and Defensive Systems.
Springer, 2023, pp. 23-39.

B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated
deep learning for intrusion detection in industrial cyber—physical sys-
tems,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp.
5615-5624, 2021.

D. Javeed, M. S. Saeed, M. Adil, P. Kumar, and A. Jolfaei, “A federated
learning-based zero trust intrusion detection system for internet of
things,” Ad Hoc Networks, vol. 162, p. 103540, 2024.

H. Yang, L. Cheng, and M. C. Chuah, “Deep-learning-based network
intrusion detection for scada systems,” in 2019 IEEE Conference on
Communications and Network Security (CNS). 1EEE, 2019, pp. 1-7.
R. Gilvez, V. Moonsamy, and C. Diaz, “Less is more: A privacy-
respecting android malware classifier using federated learning,” arXiv
preprint arXiv:2007.08319, 2020.

S. Y. Yerima and S. Sezer, “Droidfusion: A novel multilevel classifier
fusion approach for android malware detection,” IEEE transactions on
cybernetics, vol. 49, no. 2, pp. 453-466, 2018.

Y. Zhang, C. Jiang, B. Yue, J. Wan, and M. Guizani, “Information fusion
for edge intelligence: A survey,” Information Fusion, vol. 81, pp. 171-
186, 2022.

P. Borah, D. Bhattacharyya, and J. Kalita, “Malware dataset generation
and evaluation,” in 2020 IEEE 4th Conference on Information &
Communication Technology (CICT). 1EEE, 2020, pp. 1-6.

	Introduction
	Background
	Methodology: Partial Federated Primal-Dual Optimization for Android Malware Detection
	System Overview
	Augmented Lagrangian Formulation
	Optimization Framework

	Simulation Results and Discussion
	Dataset Description
	Experimental Setup
	Discussion and Analysis

	Conclusion
	References

